53 research outputs found

    Fibrinogen Chains Intrinsic to the Brain

    Get PDF
    We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bβ, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bβ, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 μM), TNF-α (100 nM), ATP-γ-S (100 μM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bβ increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes

    Periprocedural antithrombotic treatment during acute mechanical thrombectomy for ischemic stroke: A systematic review

    Get PDF
    Background: More than one-third of the patients with ischemic stroke caused by an intracranial large vessel occlusion do not recover to functional independence despite fast and successful recanalization by acute mechanical thrombectomy (MT). This may partially be explained by incomplete microvascular reperfusion. Some antithrombotics, e.g., antiplatelet agents and heparin, may be able to restore microvascular reperfusion. However, antithrombotics may also increase the risk of symptomatic intracranial hemorrhage (sICH). The aim of this review was to assess the potential safety and functional outcome of periprocedural antiplatelet or heparin use during acute MT for ischemic stroke. Methods: We systematically searched PubMed, Embase, Medline, Web of Science, and Cochrane for studies investigating the safety and functional outcome of periprocedural antiplatelet or heparin treatment during acute MT for ischemic stroke. The primary outcome was the risk for sICH. Secondary outcomes were functional independence after 3-6 months (modified Rankin Scale 0-2) and mortality within 6 months. Results: 837 studies were identified through the search, of which 19 studies were included. The sICH risks of the periprocedural use of antiplatelets ranged from 6 to 17%, and for heparin from 5 to 12%. Two of four studies reporting relative effects of the use of antithrombotics are pointing toward an increased risk of sICH. Among patients treated with antiplatelet agents, functional independence varied from 23 to 60% and mortality from 18 to 33%. For heparin, this was, respectively, 19-54% and 19-33%. The three studies presenting relative effects of antiplatelets on functional independence showed neutral effects. Both studies reporting relative effects of heparin on functional independence found it to increase this chance. Conclusion: Randomized controlled trials investigating the effect of periprocedural antithrombotic treatment in MT are lacking. Some observational studies report a slight increase in sICH risk, which may be acceptable because they also suggest a beneficial effect on functional outcome. Therefore, randomized controlled trials are warranted to address the question whether the potentially higher risk of sICH could be outweighed by improved functional outcome

    Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke : a secondary analysis of an individual patient data meta-analysis

    Get PDF
    Background Randomised trials have shown that alteplase improves the odds of a good outcome when delivered within 4.5 h of acute ischaemic stroke. However, alteplase also increases the risk of intracerebral haemorrhage; we aimed to determine the proportional and absolute effects of alteplase on the risks of intracerebral haemorrhage, mortality, and functional impairment in different types of patients. Methods We used individual patient data from the Stroke Thrombolysis Trialists' (STT) meta-analysis of randomised trials of alteplase versus placebo (or untreated control) in patients with acute ischaemic stroke. We prespecified assessment of three classifications of intracerebral haemorrhage: type 2 parenchymal haemorrhage within 7 days; Safe Implementation of Thrombolysis in Stroke Monitoring Study's (SITS-MOST) haemorrhage within 24-36 h (type 2 parenchymal haemorrhage with a deterioration of at least 4 points on National Institutes of Health Stroke Scale [NIHSS]); and fatal intracerebral haemorrhage within 7 days. We used logistic regression, stratified by trial, to model the log odds of intracerebral haemorrhage on allocation to alteplase, treatment delay, age, and stroke severity. We did exploratory analyses to assess mortality after intracerebral haemorrhage and examine the absolute risks of intracerebral haemorrhage in the context of functional outcome at 90-180 days. Findings Data were available from 6756 participants in the nine trials of intravenous alteplase versus control. Alteplase increased the odds of type 2 parenchymal haemorrhage (occurring in 231 [6.8%] of 3391 patients allocated alteplase vs 44 [1.3%] of 3365 patients allocated control; odds ratio [OR] 5.55 [95% CI 4.01-7.70]; absolute excess 5.5% [4.6-6.4]); of SITS-MOST haemorrhage (124 [3.7%] of 3391 vs 19 [0.6%] of 3365; OR 6.67 [4.11-10.84]; absolute excess 3.1% [2.4-3.8]); and of fatal intracerebral haemorrhage (91 [2.7%] of 3391 vs 13 [0.4%] of 3365; OR 7.14 [3.98-12.79]; absolute excess 2.3% [1.7-2.9]). However defined, the proportional increase in intracerebral haemorrhage was similar irrespective of treatment delay, age, or baseline stroke severity, but the absolute excess risk of intracerebral haemorrhage increased with increasing stroke severity: for SITS-MOST intracerebral haemorrhage the absolute excess risk ranged from 1.5% (0.8-2.6%) for strokes with NIHSS 0-4 to 3.7% (2.1-6.3%) for NIHSS 22 or more (p=0.0101). For patients treated within 4.5 h, the absolute increase in the proportion (6.8% [4.0% to 9.5%]) achieving a modified Rankin Scale of 0 or 1 (excellent outcome) exceeded the absolute increase in risk of fatal intracerebral haemorrhage (2.2% [1.5% to 3.0%]) and the increased risk of any death within 90 days (0.9% [-1.4% to 3.2%]). Interpretation Among patients given alteplase, the net outcome is predicted both by time to treatment (with faster time increasing the proportion achieving an excellent outcome) and stroke severity (with a more severe stroke increasing the absolute risk of intracerebral haemorrhage). Although, within 4.5 h of stroke, the probability of achieving an excellent outcome with alteplase treatment exceeds the risk of death, early treatment is especially important for patients with severe stroke.Peer reviewe

    Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome

    Get PDF
    BACKGROUND: Cerebral ischaemia initiates an inflammatory response in the brain and periphery. We assessed the relationship between peak values of plasma interleukin-6 (IL-6) in the first week after ischaemic stroke, with measures of stroke severity and outcome. METHODS: Thirty-seven patients with ischaemic stroke were prospectively recruited. Plasma IL-6, and other markers of peripheral inflammation, were measured at pre-determined timepoints in the first week after stroke onset. Primary analyses were the association between peak plasma IL-6 concentration with both modified Rankin score (mRS) at 3 months and computed tomography (CT) brain infarct volume. RESULTS: Peak plasma IL-6 concentration correlated significantly (p < 0.001) with CT brain infarct volume (r = 0.75) and mRS at 3 months (r = 0.72). It correlated similarly with clinical outcome at 12 months or stroke severity. Strong associations were also noted between either peak plasma C-reactive protein (CRP) concentration or white blood cell (WBC) count, and all outcome measures. CONCLUSIONS: These data provide evidence that the magnitude of the peripheral inflammatory response is related to the severity of acute ischaemic stroke, and clinical outcome

    Details of a prospective protocol for a collaborative meta-analysis of individual participant data from all randomized trials of intravenous rt-PA vs. control:statistical analysis plan for the Stroke Thrombolysis Trialists' Collaborative meta-analysis

    Get PDF
    RATIONALE: Thrombolysis with intravenous alteplase is both effective and safe when administered to particular types of patient within 4·5 hours of having an ischemic stroke. However, the extent to which effects might vary in different types of patient is uncertain. AIMS AND DESIGN: We describe the protocol for an updated individual patient data meta-analysis of trials of intravenous alteplase, including results from the recently reported third International Stroke Trial, in which a wide range of patients enrolled up to six-hours after stroke onset were randomized to alteplase vs. control. STUDY OUTCOMES: This protocol will specify the primary outcome for efficacy, specified prior to knowledge of the results from the third International Stroke Trial, as the proportion of patients having a 'favorable' stroke outcome, defined by modified Rankin Score 0-1 at final follow-up at three- to six-months. The primary analysis will be to estimate the extent to which the known benefit of alteplase on modified Rankin Score 0-1 diminishes with treatment delay, and the extent to which it is independently modified by age and stroke severity. Key secondary outcomes include effect of alteplase on death within 90 days; analyses of modified Rankin Score using ordinal, rather than dichotomous, methods; and effects of alteplase on symptomatic intracranial hemorrhage, fatal intracranial hemorrhage, symptomatic ischemic brain edema and early edema, effacement and/or midline shift. DISCUSSION: This collaborative meta-analysis of individual participant data from all randomized trials of intravenous alteplase vs. control will demonstrate how the known benefits of alteplase on ischemic stroke outcome vary across different types of patient

    Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke:A meta-analysis of individual patient data from randomised trials

    Get PDF
    Background Alteplase is effective for treatment of acute ischaemic stroke but debate continues about its use after longer times since stroke onset, in older patients, and among patients who have had the least or most severe strokes. We assessed the role of these factors in affecting good stroke outcome in patients given alteplase. Methods We did a pre-specified meta-analysis of individual patient data from 6756 patients in nine randomised trials comparing alteplase with placebo or open control. We included all completed randomised phase 3 trials of intravenous alteplase for treatment of acute ischaemic stroke for which data were available. Retrospective checks confirmed that no eligible trials had been omitted. We defined a good stroke outcome as no significant disability at 3-6 months, defined by a modified Rankin Score of 0 or 1. Additional outcomes included symptomatic intracranial haemorrhage (defined by type 2 parenchymal haemorrhage within 7 days and, separately, by the SITS-MOST definition of parenchymal type 2 haemorrhage within 36 h), fatal intracranial haemorrhage within 7 days, and 90-day mortality. Findings Alteplase increased the odds of a good stroke outcome, with earlier treatment associated with bigger proportional benefit. Treatment within 3·0 h resulted in a good outcome for 259 (32·9%) of 787 patients who received alteplase versus 176 (23·1%) of 762 who received control (OR 1·75, 95% CI 1·35-2·27); delay of greater than 3·0 h, up to 4·5 h, resulted in good outcome for 485 (35·3%) of 1375 versus 432 (30·1%) of 1437 (OR 1·26, 95% CI 1·05-1·51); and delay of more than 4·5 h resulted in good outcome for 401 (32·6%) of 1229 versus 357 (30·6%) of 1166 (OR 1·15, 95% CI 0·95-1·40). Proportional treatment benefits were similar irrespective of age or stroke severity. Alteplase significantly increased the odds of symptomatic intracranial haemorrhage (type 2 parenchymal haemorrhage definition 231 [6·8%] of 3391 vs 44 [1·3%] of 3365, OR 5·55, 95% CI 4·01-7·70, p&lt;0·0001; SITS-MOST definition 124 [3·7%] vs 19 [0·6%], OR 6·67, 95% CI 4·11-10·84, p&lt;0·0001) and of fatal intracranial haemorrhage within 7 days (91 [2·7%] vs 13 [0·4%]; OR 7·14, 95% CI 3·98-12·79, p&lt;0·0001). The relative increase in fatal intracranial haemorrhage from alteplase was similar irrespective of treatment delay, age, or stroke severity, but the absolute excess risk attributable to alteplase was bigger among patients who had more severe strokes. There was no excess in other early causes of death and no significant effect on later causes of death. Consequently, mortality at 90 days was 608 (17·9%) in the alteplase group versus 556 (16·5%) in the control group (hazard ratio 1·11, 95% CI 0·99-1·25, p=0·07). Taken together, therefore, despite an average absolute increased risk of early death from intracranial haemorrhage of about 2%, by 3-6 months this risk was offset by an average absolute increase in disability-free survival of about 10% for patients treated within 3·0 h and about 5% for patients treated after 3·0 h, up to 4·5 h. Interpretation Irrespective of age or stroke severity, and despite an increased risk of fatal intracranial haemorrhage during the first few days after treatment, alteplase significantly improves the overall odds of a good stroke outcome when delivered within 4·5 h of stroke onset, with earlier treatment associated with bigger proportional benefits. Funding UK Medical Research Council, British Heart Foundation, University of Glasgow, University of Edinburgh

    The Inflammatory Response After Ischemic Stroke: Targeting β\u3csub\u3e2\u3c/sub\u3e and β\u3csub\u3e1\u3c/sub\u3e Integrins

    Get PDF
    Ischemic stroke is a leading cause of death and disability with limited therapeutic options. Resulting inflammatory mechanisms after reperfusion (removal of the thrombus) result in cytokine activation, calcium influx, and leukocytic infiltration to the area of ischemia. In particular, leukocytes migrate toward areas of inflammation by use of integrins, particularly integrins β1 and β2. Integrins have been shown to be necessary for leukocyte adhesion and migration, and thus are of immediate interest in many inflammatory diseases, including ischemic stroke. In this review, we identify the main integrins involved in leukocytic migration following stroke (αLβ2, αDβ2, α4β1, and α5β1) and targeted clinical therapeutic interventions

    Antithrombotic Therapy of Acute Stroke: Thrombolytic Agents

    No full text
    corecore